Shewhart Control Charts

 T Chart: FormulaNHS
East London NHS Foundation Trust

TChart Formula

East London NHS Foundation Trust

Data

Date of Fall	Days Between Falls (t)	Transformed Days Between Falls (y)	Moving Range of y $\left(\right.$ MR $=y_{i}-y_{(i+1)}$
$02 / 03 / 2014$			
$06 / 03 / 2014$	4	1.5	
$07 / 03 / 2014$	1	1.0	0.5
$15 / 03 / 2014$	8	1.8	0.8
$22 / 03 / 2014$	7	1.7	0.1
$01 / 04 / 2014$	10	1.9	0.2
$11 / 04 / 2014$	10	1.9	0.0
$14 / 04 / 2014$	3	1.4	0.5
$26 / 04 / 2014$	12	2.0	0.6
$03 / 05 / 2014$	7	1.7	0.3
$04 / 05 / 2014$	1	1.0	0.7
$13 / 05 / 2014$	9	1.8	0.8
$28 / 05 / 2014$	15	2.1	0.3
$04 / 06 / 2014$	7	1.7	0.4
$10 / 06 / 2014$	6	1.6	0.1
$14 / 06 / 2014$	4	1.5	0.2
$21 / 06 / 2014$	7	1.7	0.2
$30 / 06 / 2014$	9	1.8	0.1

$\sum y$	28.2
	MR

$\boldsymbol{n}=$ total number of falls
$\boldsymbol{t}=$ time between falls
($\boldsymbol{t} \neq \mathbf{0}$, more specific measurement required e.g. hours, minutes.) $\boldsymbol{y}=t^{0.2777}$
$\overline{\mathbf{Y}}=$ average of y 's
$\mathbf{M R}=$ moving range of y 's
$\mathbf{M R}=$ average moving range of y 's

Calculation

$\boldsymbol{n}=18$
Cal culate $\overline{\mathbf{Y}}$. This will be used to calculate the $C L, ~ U C L$ and LCL

$$
\overline{\mathbf{Y}}=\frac{\sum y}{n-1}=\frac{28.2}{17}=1.7 \text { (1.d.p) }
$$

Calculate $\overline{\mathbf{M R}}$ and $\mathbf{3 . 2 7} \overline{\mathbf{M R}}$. Remove any \boldsymbol{y} values where $\boldsymbol{y}>\mathbf{3 . 2 7} \overline{\mathrm{MR}}$. This is neces saryto ens ure the limits a ren't affected by special cause variation.

$$
\begin{aligned}
\overline{\mathbf{M R}} & =\frac{\sum \mathrm{MR}}{n-2}=\frac{\sum\left(y_{i}-y_{(i+1)}\right)}{n-2}=\frac{5.8}{16} \\
& =0.4(1 . d . p) \\
\mathbf{3 . 2 7} \overline{\mathbf{M R}} & =3.27 \times 0.4 \\
& =1.2(1 . d . p)
\end{aligned}
$$

Use the remaining MR values to calculate $\overline{\mathbf{M R}}$ '. In this instance, none of the $\mathbf{M R}$ values are greater than 1.2 therefore $\overline{\mathbf{M R}^{\prime}}=\overline{\mathbf{M R}}=0.4$
Cal culate the UL and LL. These will be us ed to calculate the UCL and LCL

$$
\begin{aligned}
\mathbf{U L} & =\overline{\mathrm{Y}}+2.66 \times \overline{\mathrm{MR}}^{\prime} & \mathbf{L L} & =\overline{\mathrm{Y}}-2.66 \times{\overline{\mathrm{MR}^{\prime}}}^{\prime} \\
& =1.7+2.66 \times 0.4 & & =1.7-2.66 \times 0.4 \\
& =2.6(1 . d . p) & & =0.7 \text { (1.d.p) }
\end{aligned}
$$

Perform the following transformations to calculate the CL, UCL andLCL. When $\mathbf{L L}<\mathbf{0}$, then there is no LCL (as per this example).
$\mathbf{U C L}=\mathrm{UL}^{3.6}$

$$
=2.6^{3.6}
$$

$$
=32.2
$$

$\mathbf{L C L}=\mathrm{LL}^{3.6}$

$$
=0.7^{3.6}
$$

$$
=0.3
$$

$$
\begin{aligned}
\mathbf{C L} & =\overline{\mathrm{Y}}^{3.6} \\
& =1.7^{3.6} \\
& =6.2
\end{aligned}
$$

Legend + Chart

$n=$ total number of events	UCL $=$ upper control limit
$t=$ time between events	LCL

The T Chart is sometimes also displayed on a logarithmic $\left(\log _{10}\right)$ scale axis to make the limits appear more symmetrical andcreating more visual sensitivity around the LCL

