Shewhart Control Charts T Chart: Formula

T Chart Formula

Data

Date of Fall	Days Between Falls (t)	Transformed Days Between Falls (y)	Moving Range of y (MR = $y_i - y_{(i+1)}$)
02/03/2014			
06/03/2014	4	1.5	
07/03/2014	1	1.0	0.5
15/03/2014	8	1.8	0.8
22/03/2014	7	1.7	0.1
01/04/2014	10	1.9	0.2
11/04/2014	10	1.9	0.0
14/04/2014	3	1.4	0.5
26/04/2014	12	2.0	0.6
03/05/2014	7	1.7	0.3
04/05/2014	1	1.0	0.7
13/05/2014	9	1.8	0.8
28/05/2014	15	2.1	0.3
04/06/2014	7	1.7	0.4
10/06/2014	6	1.6	0.1
14/06/2014	4	1.5	0.2
21/06/2014	7	1.7	0.2
30/06/2014	9	1.8	0.1

- n =total number of falls
- t = time between falls
- $(t \neq 0,$ more specific measurement required e.g. hours, minutes.) $\mathbf{v} = t^{0.2777}$

 $\overline{\mathbf{Y}}$ = average of y's

- **MR** = moving range of y's
- $\overline{\mathbf{MR}}$ = average moving range of y's

Calculation

n = 18

Calculate $ar{\mathbf{Y}}$. This will be used to calculate the CL, UCL and LCL

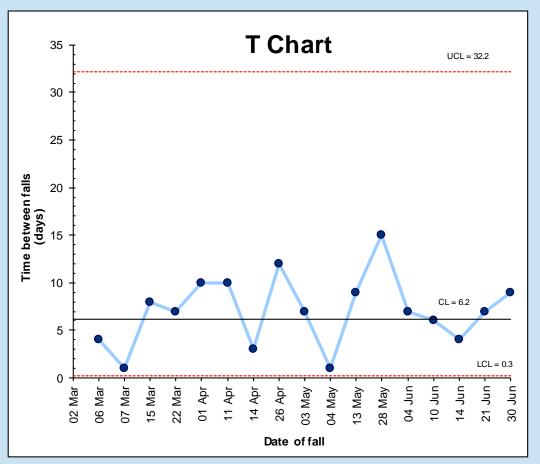
 $\overline{\mathbf{Y}} = \frac{\sum y}{n-1} = \frac{28.2}{17} = 1.7 \ (1.d.p)$

Calculate \overline{MR} and 3.27 \overline{MR} . Remove any y values where $y > 3.27 \overline{MR}$. This is necessary to ensure the limits aren't affected by special cause variation.

$$\overline{\mathbf{MR}} = \frac{\sum MR}{n-2} = \frac{\sum (y_i - y_{(i+1)})}{n-2} = \frac{5.8}{16}$$
$$= 0.4 \ (1.d.p)$$
$$8.27 \ \overline{\mathbf{MR}} = 3.27 \times 0.4$$
$$= 1.2 \ (1.d.p)$$

Use the remaining **MR** values to calculate $\overline{\mathbf{MR'}}$. In this instance, none of the **MR** values are greater than 1.2 therefore $\overline{\mathbf{MR'}} = \overline{\mathbf{MR}} = 0.4$

Calculate the UL and LL. These will be used to calculate the UCL and LCL


$\mathbf{UL} = \overline{\mathbf{Y}} + 2.66 \times \overline{\mathbf{MR}}'$	$\mathbf{LL} = \overline{\mathbf{Y}} - 2.66 \times \overline{\mathbf{MR}}'$
$= 1.7 + 2.66 \times 0.4$	$= 1.7 - 2.66 \times 0.4$
= 2.6 (1. <i>d</i> . <i>p</i>)	= 0.7 (1. <i>d</i> . <i>p</i>)

Perform the following transformations to calculate the **CL**, **UCL** and **LCL**. When **LL < 0**, then there is no LCL (as per this example).

utes.)	$\mathbf{UCL} = \mathbf{UL}^{3.6}$	$\mathbf{LCL} = \mathbf{LL}^{3.6}$	$\mathbf{CL} = \overline{\mathbf{Y}}^{3.6}$
	$= 2.6^{3.6}$	$= 0.7^{3.6}$	$= 1.7^{3.6}$
	= 32.2	= 0.3	= 6.2

Legend + Chart

n = total number of eventsUCL = upper control limitt = time between eventsLCL = lower control limity = transformed time between events ($y = t^{0.2777}$)CL = centre line

The T Chart is sometimes also displayed on a **logarithmic (log₁₀) scale** axis to make the limits appear more symmetrical and creating more visual sensitivity around the LCL